5.5 The Substitution Rule/65: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>
<math>


\int_{1}^{2} x \sqrt{x-1} dx = \int_{0}^{1} u+1 \sqrt{u}du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} u^ \frac{3}{2} + \sqrt{u}du = \frac{2}{5} U^\frac{5}{2} + \frac{2}{3} U^\frac{3}{2}| _{0}^{1}  =\frac{2}{5} + \frac{2}{3} = \frac{16}{15}
\int_{1}^{2} x \sqrt{x-1} dx  


</math>
</math>

Revision as of 15:54, 7 September 2022


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= x-1 \\ u+1 &= x \\[2ex] du &= 2 dx \\[2ex] \frac{1}{2} du &= dx \end{align} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{1}^{2} x \sqrt{x-1} dx &= \int_{0}^{1} u+1 \sqrt{u}du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} u^ \frac{3}{2} + \sqrt{u}du \\[2ex] &= \frac{2}{5} U^\frac{5}{2} + \frac{2}{3} U^\frac{3}{2}| _{0}^{1} =\frac{2}{5} + \frac{2}{3} \\[2ex] &= \frac{16}{15}\\[2ex] \end{align} }