5.5 The Substitution Rule/41: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 19: Line 19:
\begin{align}
\begin{align}
  \int \frac{1}{u} du  
  \int \frac{1}{u} du  
&= \ln |u| +c [2ex]
&= \ln |u| +c \\[2ex]
&= \ln |\arcsin {x}| + c [2ex]
&= \ln |\arcsin {x}| + c \\[2ex]
\end{align}
\end{align}
</math>
</math>

Revision as of 15:48, 7 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int \frac{1}{\sqrt{1-x^{2}} \arcsin {x}} = \int \frac{1}{u} du = \ln |u| +c = \ln |\arcsin {x}| + c }


Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}u&=\arcsin {x}\\[2ex]du&={\frac {1}{\sqrt {1-x^{2}}}}dx\\[2ex]\end{aligned}}}


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int \frac{1}{u} du &= \ln |u| +c \\[2ex] &= \ln |\arcsin {x}| + c \\[2ex] \end{align} }