5.5 The Substitution Rule/21: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:
\begin{align}
\begin{align}


u &= \sqrt{u}
u &= \sqrt{u} \\[2ex]
  \\[2ex]
du &= \frac{1}{2}\ \frac{1}{\sqrt{t}} dx \\[2ex]
du &= \frac{1}{2}\ \frac{1}{\sqrt{t}} dx \\[2ex]
2du &= \frac{1}{\sqrt{t}} dx
2du &= \frac{1}{\sqrt{t}} dx
\end{align}
\end{align}
</math>
</math>

Revision as of 15:36, 7 September 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int {\frac {\cos {({\sqrt {t}})}}{\sqrt {t}}}dt=2\int \cos {u}du=2\sin {u}+c=2\sin({\sqrt {u}})+c}


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \sqrt{u} \\[2ex] du &= \frac{1}{2}\ \frac{1}{\sqrt{t}} dx \\[2ex] 2du &= \frac{1}{\sqrt{t}} dx \end{align} }