5.3 The Fundamental Theorem of Calculus/41: Difference between revisions
No edit summary |
No edit summary |
||
Line 16: | Line 16: | ||
</math> | </math> | ||
<math> = -\cos(x)\bigg|_{0}^{\frac{\pi}{2}} + \sin(x)\bigg|_{\frac{\pi}{2}}^{\pi} = \left[-\cos(\frac{\pi}{2}) + \cos(0)\right] + \left[\sin(\pi)-\sin(\frac{\pi}{2})\right] | <math> = -\cos(x)\bigg|_{0}^{\frac{\pi}{2}} + \sin(x)\bigg|_{\frac{\pi}{2}}^{\pi} = \left[-\cos\left(\frac{\pi}{2}\right) + \cos(0)\right] + \left[\sin(\pi)-\sin(\frac{\pi}{2})\right] | ||
</math> | </math> |
Revision as of 22:02, 6 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{\pi}f(x)\,dx \quad \text{where} \; f(x) = \begin{cases} \sin(x) & 0 \le x < \frac{\pi}{2} \\ \cos(x) & \frac{\pi}{2} \le x \le \pi \end{cases} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle = \int_{0}^{\frac{\pi}{2}}f(x)\,dx + \int_{\frac{\pi}{2}}^{\pi}f(x)\,dx = \int_{0}^{\frac{\pi}{2}}\sin(x)\,dx + \int_{\frac{\pi}{2}}^{\pi}\cos(x)\,dx }