5.3 The Fundamental Theorem of Calculus/23: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
\int_{0}^{1}x^{\frac{4}{5}}dx &=\frac{x^{\frac{4}{5}+1}}{\frac{4}{5}+1} \bigg|_{0}^{1} =\frac{x^{\frac{9}{5}}}{\frac{9}{5}} \bigg|_{0}^{1} \\[2ex]
\int_{0}^{1}x^{\frac{4}{5}}dx &=\frac{x^{\frac{4}{5}+1}}{\frac{4}{5}+1} \bigg|_{0}^{1} =\frac{x^{\frac{9}{5}}}{\frac{9}{5}} \bigg|_{0}^{1} \\[2ex]


&=\frac{5\sqrt[5]{1^9}}{9}-\frac{5 \sqrt[5]{0^9}}{9} \\[2ex]
&=\frac{5\sqrt[5]{(1)^9}}{9}-\frac{5 \sqrt[5]{(0)^9}}{9} \\[2ex]


&=\cfrac{5}{9}
&=\cfrac{5}{9}

Revision as of 20:50, 6 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{1}x^{\frac{4}{5}}dx &=\frac{x^{\frac{4}{5}+1}}{\frac{4}{5}+1} \bigg|_{0}^{1} =\frac{x^{\frac{9}{5}}}{\frac{9}{5}} \bigg|_{0}^{1} \\[2ex] &=\frac{5\sqrt[5]{(1)^9}}{9}-\frac{5 \sqrt[5]{(0)^9}}{9} \\[2ex] &=\cfrac{5}{9} \end{align} }