5.5 The Substitution Rule/15: Difference between revisions
No edit summary Tag: Manual revert |
No edit summary |
||
| Line 7: | Line 7: | ||
let \; u &=\pi t \\[2ex] | let \; u &=\pi t \\[2ex] | ||
du &= \pi dx \\[2ex] | du &= \pi\; dx \\[2ex] | ||
\frac{1}{\pi}du &= dx | \frac{1}{\pi}du &= dx | ||
\end{align} | \end{align} | ||
Latest revision as of 05:37, 5 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \ \int sin(\pi t) dt \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} let \; u &=\pi t \\[2ex] du &= \pi\; dx \\[2ex] \frac{1}{\pi}du &= dx \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \ \int sin(\pi t) dt = \int sin(u)(\frac{1}{\pi}du)= \int \frac{1}{\pi} (-cosu) + c = \int - \frac{1}{\pi} cos (\pi t) + c \end{align} }