5.5 The Substitution Rule/19: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "<math> \begin{align} \int\frac{\left(\ln(x)\right)^2}{x}dx \ = \ \int u^2du = \ \frac{u^{2+1}}{2+1}du \ = \ \frac{1}{3}u^3+C ---- = \ \frac{1}{3}(\ln(x))^3+C \end{align} </math>")
 
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}


\int\frac{\left(\ln(x)\right)^2}{x}dx \ = \ \int u^2du  
& \int\frac{\left(\ln(x)\right)^2}{x}dx \ = \ \int u^2du \\[2ex]
= \ \frac{u^{2+1}}{2+1}du \ = \ \frac{1}{3}u^3+C
& = \ \frac{u^{2+1}}{2+1}du \ = \ \frac{1}{3}u^3+C \\[2ex]


----
----


= \ \frac{1}{3}(\ln(x))^3+C
& = \ \frac{1}{3}(\ln(x))^3+C





Revision as of 06:53, 3 September 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}&\int {\frac {\left(\ln(x)\right)^{2}}{x}}dx\ =\ \int u^{2}du\\[2ex]&=\ {\frac {u^{2+1}}{2+1}}du\ =\ {\frac {1}{3}}u^{3}+C\\[2ex]----&=\ {\frac {1}{3}}(\ln(x))^{3}+C\end{aligned}}}