6.2 Trigonometric Functions: Unit Circle Approach/49: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<math> | <math> 200 \Rightarrow (\frac{7/pi}{6}</math><br><br> | ||
<math> | <math> | ||
Revision as of 21:00, 1 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 200 \Rightarrow (\frac{7/pi}{6}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \sin{\left(\frac{2\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{2\pi}{3}\right)} &= \frac{{1}} \frac{\sqrt{3}}{2} \cdot{2} = \frac{2}{\sqrt{3}} \cdot{\sqrt{3}} = \frac{2\sqrt{3}}{3} \\[2ex] \cos{\left(\frac{2\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{2\pi}{3}\right)} &= \frac{1}{-\frac{1}{2}} \cdot{2} = -\frac{2}{1} = -2 \\[2ex] \tan{\left(\frac{2\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \cdot{2} = -\frac{\sqrt{3}}{1} = -\sqrt{3} & \cot{\left(\frac{2\pi}{3}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex] \end{align} }