5.4 Indefinite Integrals and the Net Change Theorem/43: Difference between revisions
No edit summary |
No edit summary |
||
| Line 5: | Line 5: | ||
<math> = \left(\frac{1}{2} {x^2} + x^2 \right)\bigg|_{-1}^{0} + \left(\frac{1}{2} {x^2} - x^2 \right)\bigg|_{0}^{2} | <math> | ||
0- \left(\frac{1}{2} (-1)^2 + (-1)^2 \right) + \left(\frac{1}{2} (2)^2 - (2)^2 \right) - 0 | = \left(\frac{1}{2} {x^2} + x^2 \right)\bigg|_{-1}^{0} + \left(\frac{1}{2} {x^2} - x^2 \right)\bigg|_{0}^{2} | ||
= 0- \left(\frac{1}{2} (-1)^2 + (-1)^2 \right) + \left(\frac{1}{2} (2)^2 - (2)^2 \right) - 0 | |||
= \left(\frac{1}{2} + 1\right) + \left(\frac{1}{2} (4) - 4\right) | = \left(\frac{1}{2} + 1\right) + \left(\frac{1}{2} (4) - 4\right) | ||
</math> | </math> | ||
Revision as of 18:55, 30 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int\limits_{-1}^{2}(x-2|x|)dx = \int\limits_{-1}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle = \left(\frac{1}{2} {x^2} + x^2 \right)\bigg|_{-1}^{0} + \left(\frac{1}{2} {x^2} - x^2 \right)\bigg|_{0}^{2} = 0- \left(\frac{1}{2} (-1)^2 + (-1)^2 \right) + \left(\frac{1}{2} (2)^2 - (2)^2 \right) - 0 = \left(\frac{1}{2} + 1\right) + \left(\frac{1}{2} (4) - 4\right) }