6.2 Trigonometric Functions: Unit Circle Approach/63: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:
\tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \frac{\sqrt{3}}{\cancel{2}}\cdot \cancel{2} = \sqrt{3}
\tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \frac{\sqrt{3}}{\cancel{2}}\cdot \cancel{2} = \sqrt{3}


& \cot{\left(\frac{-14\pi}{3}\right)} &= \frac{\frac{\cancel{-}1}{2}}{\frac{\cancel{-}\sqrt{3}}{2}}=\frac{1}{2}\cdot\frac{2}{\sqrt{3}} \\[2ex]
& \cot{\left(\frac{-14\pi}{3}\right)} &= \frac{\frac{\cancel{-}1}{2}}{\frac{\cancel{-}\sqrt{3}}{2}}=\frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 16:40, 30 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{-14\pi}{3} \Rightarrow \left(\frac{-1}{2}, \frac{-\sqrt{3}}{2}\right)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \sin{\left(\frac{-14\pi}{3}\right)} &= -\frac{\sqrt{3}}{2} & \csc{\left(\frac{-14\pi}{3}\right)} &= \frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}= \frac{2\sqrt{3}}{3}\\[2ex] \cos{\left(\frac{-14\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{-14\pi}{3}\right)} &= \frac{1}{\frac{1}{2}}=2\\[2ex] \tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \frac{\sqrt{3}}{\cancel{2}}\cdot \cancel{2} = \sqrt{3} & \cot{\left(\frac{-14\pi}{3}\right)} &= \frac{\frac{\cancel{-}1}{2}}{\frac{\cancel{-}\sqrt{3}}{2}}=\frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}} \\[2ex] \end{align} }