5.4 Indefinite Integrals and the Net Change Theorem/43: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:


&= \int\limits_{-1}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx \\[2ex]
&= \int\limits_{-1}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx \\[2ex]
&= \left(\frac{1}{2} {x^2} + x^2 \right)\bigg|_{-1}^{0} + \left(/frac{1}{2} {x^2} - x^2 \right)\bigg|_{0}^{2}
&= \left(\frac{1}{2} {x^2} + x^2 \right)\bigg|_{-1}^{0} + \left(\frac{1}{2} {x^2} - x^2 \right)\bigg|_{0}^{2}


\end{align}
\end{align}
</math>
</math>

Revision as of 16:17, 30 August 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int \limits _{-1}^{2}(x-2|x|)dx\\[1ex]&=\int \limits _{-1}^{0}(x-2(-x))dx+\int \limits _{0}^{2}(x-2(x))dx\\[2ex]&=\left({\frac {1}{2}}{x^{2}}+x^{2}\right){\bigg |}_{-1}^{0}+\left({\frac {1}{2}}{x^{2}}-x^{2}\right){\bigg |}_{0}^{2}\end{aligned}}}