5.4 Indefinite Integrals and the Net Change Theorem/43: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 4: | Line 4: | ||
&= \int\limits_{-2}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx \\[2ex] | &= \int\limits_{-2}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx \\[2ex] | ||
&= \left(/frac{1}{2} {x^2}\right) | &= \left(/frac{1}{2}*{x^2}\right) | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 16:11, 30 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int\limits_{-1}^{2}(x-2|x|)dx \\[1ex] &= \int\limits_{-2}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx \\[2ex] &= \left(/frac{1}{2}*{x^2}\right) \end{align} }