6.2 Trigonometric Functions: Unit Circle Approach/63: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:
\cos{\left(\frac{-14\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{-14\pi}{3}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex]  
\cos{\left(\frac{-14\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{-14\pi}{3}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex]  


\tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{\sqrt{1}}{2}} = \left(\frac{1}{2}\right)\left(\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3}
\tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \left(\frac{1}{2}\right)\left(\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3}


& \cot{\left(\frac{-14\pi}{3}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex]
& \cot{\left(\frac{-14\pi}{3}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex]

Revision as of 16:07, 29 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{-14\pi}{3} \Rightarrow \left(\frac{-1}{2}, \frac{-\sqrt{3}}{2}\right)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \sin{\left(\frac{-14\pi}{3}\right)} &= -\frac{\sqrt{3}}{2} & \csc{\left(\frac{-14\pi}{3}\right)} &= \frac{2}{1}=2\\[2ex] \cos{\left(\frac{-14\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{-14\pi}{3}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex] \tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \left(\frac{1}{2}\right)\left(\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3} & \cot{\left(\frac{-14\pi}{3}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex] \end{align} }