5.4 Indefinite Integrals and the Net Change Theorem/25: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Tag: Manual revert
Line 4: Line 4:
& \int_{-2}^{2}({3u+1})^2 du \\[2ex]
& \int_{-2}^{2}({3u+1})^2 du \\[2ex]


& \int {3u^2+6u+1} {du} \\[2ex]
& \int {3u^2+6u+1} du \\[2ex]


& {3u^3+3u^2+u}\bigg|_{-2}^{2} \\[2ex]
& {3u^3+3u^2+u}\bigg|_{-2}^{2} \\[2ex]

Revision as of 15:44, 29 August 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}&\int _{-2}^{2}({3u+1})^{2}du\\[2ex]&\int {3u^{2}+6u+1}du\\[2ex]&{3u^{3}+3u^{2}+u}{\bigg |}_{-2}^{2}\\[2ex]&{3\cdot 2^{3}+\cdot 2^{2}+2-3\cdot -2^{3}+3\cdot -2^{2}-2}\\[2ex]&={52}\\\end{aligned}}}