5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
17)<math>\int_{}^{}1+tan^2xdx</math> =  
17)<math>\int_{}^{}1+tan^2xdx</math> =  
<math>\int_{}^{}1+\frac{sin^2x}{cos^2x}dx</math> =  
<math>\int_{}^{}1+\frac{sin^2x}{cos^2x}dx</math> =  
<math>\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx</math> <math>\cos^2x+sin^2x=1</math> thus,  
<math>\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx</math> <math>\cos^2x+sin^2x=1</math> thus,  

Revision as of 07:07, 29 August 2022

17)Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}1+tan^2xdx} =

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}1+\frac{sin^2x}{cos^2x}dx} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \cos^2x+sin^2x=1} thus, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}\frac{1}{cos^2x}dx} =


1 3 5 7 8 9 10 11 13 15 17 19 20 21 23 25 27 28 29 31 33 35 37 39 41 53