5.4 Indefinite Integrals and the Net Change Theorem/3: Difference between revisions
Jump to navigation
Jump to search
Andy Arevalo (talk | contribs) No edit summary |
Andy Arevalo (talk | contribs) No edit summary |
||
| Line 2: | Line 2: | ||
\begin{align} | \begin{align} | ||
& \int\cos^{3}xdx = \sin{x}-\frac{1}{3}\sin^{3}x+C | & \int\cos^{3}xdx = \sin{x}-\frac{1}{3}\sin^{3}x+C \\[2ex] | ||
& \frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +c]} | |||
& \frac{d}{dx} {\cos{x} - \frac{1}{3}\cdot 3\sin{x^2} \cos{x} +0} | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 19:27, 26 August 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}&\int \cos ^{3}xdx=\sin {x}-{\frac {1}{3}}\sin ^{3}x+C\\[2ex]&{\frac {d}{dx}}{[\sin {x}-{\frac {1}{3}}\sin ^{3}{x}+c]}&{\frac {d}{dx}}{\cos {x}-{\frac {1}{3}}\cdot 3\sin {x^{2}}\cos {x}+0}\end{aligned}}}