5.4 Indefinite Integrals and the Net Change Theorem/3: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}


& \int\cos^{3}xdx = \sin{x}-\frac{1}{3}\sin^{3}x+C
& \int\cos^{3}xdx = \sin{x}-\frac{1}{3}\sin^{3}x+C \\[2ex]
 
& \frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +c]}
 
& \frac{d}{dx} {\cos{x} - \frac{1}{3}\cdot 3\sin{x^2} \cos{x} +0}
 


& \frac{d}{dx} {[\sin{x} - \frac{1}{3}\cdot 3\sin{x^2} \cos{x} +0]}


\end{align}
\end{align}
</math>
</math>

Revision as of 19:27, 26 August 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}&\int \cos ^{3}xdx=\sin {x}-{\frac {1}{3}}\sin ^{3}x+C\\[2ex]&{\frac {d}{dx}}{[\sin {x}-{\frac {1}{3}}\sin ^{3}{x}+c]}&{\frac {d}{dx}}{\cos {x}-{\frac {1}{3}}\cdot 3\sin {x^{2}}\cos {x}+0}\end{aligned}}}