5.5 The Substitution Rule/2: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 16: Line 16:


<math>
<math>
\int x^3(2+x^4)^5dx = \int x^3dx(2+x^4) = \int \left(\frac{1}{4}du\right)
\int x^3(2+x^4)^5dx = \int x^3dx(2+x^4) = \int \left(\frac{1}{4}du\right)(u)
</math>
</math>

Revision as of 18:55, 26 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int x^3(2+x^4)^5dx \text{,} \quad u=2+x^4 }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &=2+x^4 \\[2ex] du &= 4x^3dx \\[2ex] \frac{1}{4}du &= x^3dx \end{align} }


Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int x^{3}(2+x^{4})^{5}dx=\int x^{3}dx(2+x^{4})=\int \left({\frac {1}{4}}du\right)(u)}