2.1 Functions: Difference between revisions
Jump to navigation
Jump to search
| Line 10: | Line 10: | ||
# How do you read <math>D=\{\forall x | x \in \Re, x\neq -5\} </math>? <br><br> | # How do you read <math>D=\{\forall x | x \in \Re, x\neq -5\} </math>? <br><br> | ||
:: Answer: <math>\begin{align} | :: Answer: | ||
<math>\begin{align} | |||
\overbrace{D}^{\text{the domain}} | \overbrace{D}^{\text{the domain}} \underbrace{=}_{\text{is}} \overbrace{\{}^{\text{the set}} \underbrace{\forall x}_{\text{of all x}} | ||
\overbrace{|}^{\text{such that}} \underbrace{x\in\Re}_{\text{x is an element of the real number set}} \overbrace{, x \neq -5}^{\text{where x is not equal to -5}} | |||
\underbrace{=}_{\text{is}} | \end{align}</math> | ||
\overbrace{\{}^{\text{the set}} | |||
\underbrace{\forall x}_{\text{of all x}} | |||
\overbrace{|}^{\text{such that}} | |||
# How do you covert from radical form to exponential form? | |||
==Solutions== | ==Solutions== | ||
Revision as of 18:51, 19 August 2022
Lecture
Lecture Notes
- How do you read ?
- Answer:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \overbrace{D}^{\text{the domain}} \underbrace{=}_{\text{is}} \overbrace{\{}^{\text{the set}} \underbrace{\forall x}_{\text{of all x}} \overbrace{|}^{\text{such that}} \underbrace{x\in\Re}_{\text{x is an element of the real number set}} \overbrace{, x \neq -5}^{\text{where x is not equal to -5}} \end{align}}
- How do you covert from radical form to exponential form?