5.3 The Fundamental Theorem of Calculus/35: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:


\int_{1}^{9}\frac{1}{2x}dx &= \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx  
\int_{1}^{9}\frac{1}{2x}dx &= \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx  
\


&= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} \\[2ex]
&= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9}  
 
&= \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} \\[2ex]


&= \ln{|9^{\frac{1}{2}}|} - \ln{|1^{\frac{1}{2}}|} = \ln{3}-0 = \ln{3} \\[2ex]
&= \ln{|9^{\frac{1}{2}}|} - \ln{|1^{\frac{1}{2}}|} = \ln{3}-0 = \ln{3} \\[2ex]

Revision as of 19:39, 25 August 2022

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{1}^{9}\frac{1}{2x}dx &= \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx \ &= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} &= \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} \\[2ex] &= \ln{|9^{\frac{1}{2}}|} - \ln{|1^{\frac{1}{2}}|} = \ln{3}-0 = \ln{3} \\[2ex] \end {align} }