Math: Difference between revisions
| Line 26: | Line 26: | ||
Sum: <syntaxhighlight lang="html5" inline><math>\sum_{i=1}^{n}i=\frac{n(n+1)}{2}</math></syntaxhighlight> gives <math>\sum_{i=1}^{n}i=\frac{n(n+1)}{2}</math><br><br> | Sum: <syntaxhighlight lang="html5" inline><math>\sum_{i=1}^{n}i=\frac{n(n+1)}{2}</math></syntaxhighlight> gives <math>\sum_{i=1}^{n}i=\frac{n(n+1)}{2}</math><br><br> | ||
Limit: <syntaxhighlight lang="html5" inline><math>\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}</math></syntaxhighlight> gives <math>\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}</math><br><br> | Limit: <syntaxhighlight lang="html5" inline><math>\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}</math></syntaxhighlight> gives <math>\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}</math><br><br> | ||
Derivative: <syntaxhighlight lang="html5" inline><math>\frac{d}{dx}\left[x^2\right]</math></syntaxhighlight> gives <math>\frac{d}{dx}\left[x^2\right]</math><br><br> | |||
Integral: <syntaxhighlight lang="html5" inline><math>\int_{1}^{x+1}\frac{1}{r}dr</math></syntaxhighlight> gives <math>\int_{1}^{x+1}\frac{1}{r}dr</math><br><br> | Integral: <syntaxhighlight lang="html5" inline><math>\int_{1}^{x+1}\frac{1}{r}dr</math></syntaxhighlight> gives <math>\int_{1}^{x+1}\frac{1}{r}dr</math><br><br> | ||
Limit bar: <syntaxhighlight lang="html5" inline><math>\bigg|_{0}^{1}</math></syntaxhighlight> gives <math>\bigg|_{0}^{1}</math><br><br> | Limit bar: <syntaxhighlight lang="html5" inline><math>\bigg|_{0}^{1}</math></syntaxhighlight> gives <math>\bigg|_{0}^{1}</math><br><br> | ||
Revision as of 15:58, 25 August 2022
Basics
To render any math equation, the math equation must be between <math></math> i.e., <math>f(x)=x^2</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(x)=x^2}
.
Common math commands
Superscript & Subscript
Superscript: <math>x^{5+y}</math> gives
Subscript: <math>x_{5+t}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x_{5+t}}
Together: <math>x_{5+t}^{5+y}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x_{5+t}^{5+y}}
Fractions & Radicals
Fractions: <math>\frac{1}{x}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{1}{x}}
Square root: <math>\sqrt{x+1}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt{x+1}}
General radical: <math>\sqrt[3]{64}=4</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt[3]{64}=4}
Trig. & Log Functions
Sin, cos, tan, etc.: <math>\sin{(\theta)}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sin{(\theta)}}
Arcsin, arccos, arctan, etc.: <math>\arcsin{(\theta)}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \arcsin{(\theta)}}
Log: <math>\log_{5}{5^2}=2</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \log_{5}{5^2}=2}
Ln: <math>\ln{e^3}=3</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ln{e^3}=3}
Calculus
Sum: <math>\sum_{i=1}^{n}i=\frac{n(n+1)}{2}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^{n}i=\frac{n(n+1)}{2}}
Limit: <math>\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lim_{h\to 0}\frac{f(x+h)-f(x)}{h}}
Derivative: <math>\frac{d}{dx}\left[x^2\right]</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\left[x^2\right]}
Integral: <math>\int_{1}^{x+1}\frac{1}{r}dr</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{1}^{x+1}\frac{1}{r}dr}
Limit bar: <math>\bigg|_{0}^{1}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \bigg|_{0}^{1}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{1}\left(3+x\sqrt{x}\right)dx &= \int_{0}^{1}\left(3+x^{1}{x}^{\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{1+\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{\frac{3}{2}}\right)dx \\[2ex] &= 3x+\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\bigg|_{0}^{1} = 3x+\frac{x^{\tfrac{5}{2}}}{\frac{5}{2}}\bigg|_{0}^{1} = 3x+\frac{2x^{\frac{5}{2}}}{5}\bigg|_{0}^{1} \\[2ex] &= \left[3(1)+\frac{2(1)^{5/2}}{5}\right]-\left[3(0)+\frac{2(0)^{5/2}}{5}\right] \\[2ex] &= 3+\frac{2}{5} = \frac{15}{5}+\frac{2}{5} = \frac{17}{5} \end{align} }
123Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle }