5.3 The Fundamental Theorem of Calculus/8: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<math>g(x)=\int_{3}^{x}e^{t^2-t}dt</math><br> | <math>g(x)=\int_{3}^{x}e^{t^2-t}dt</math><br> | ||
<math>\frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1e^{x^2-x}-0e^{( | <math>\frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1e^{x^2-x}-0e^{(3)^2-3}=e^{x^2-x}</math><br> | ||
Therefore, <math>g'(x)=e^{x^2-x}</math> | Therefore, <math>g'(x)=e^{x^2-x}</math> | ||
Revision as of 20:14, 23 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g(x)=\int_{3}^{x}e^{t^2-t}dt}
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {d}{dx}}\left[\int _{3}^{x}e^{t^{2}-t}dt\right]=1e^{x^{2}-x}-0e^{(3)^{2}-3}=e^{x^{2}-x}}
Therefore, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g'(x)=e^{x^2-x}}