2024/G2/12: Difference between revisions

From Mr. V Wiki Math
< 2024‎ | G2
Jump to navigation Jump to search
No edit summary
No edit summary
Line 12: Line 12:
3) <math>{\frac{d}{dx}} [9x^2] = 18x </math> <br><br>
3) <math>{\frac{d}{dx}} [9x^2] = 18x </math> <br><br>
4) <math>{\frac{d}{dx}} [x^3 + x^2 + 10] = 3x^2 +2x + 0 </math> <br>
4) <math>{\frac{d}{dx}} [x^3 + x^2 + 10] = 3x^2 +2x + 0 </math> <br>
5) <math>{\frac{d}{dx}} [\sqrt(x)] = {\frac{d}{dx}} [x^{{\frac{1}{2}}] = {\frac{1}{2x}^{{\frac{1}{2}-1}} </math> <br>
5) <math>{\frac{d}{dx}} [\sqrt(x)] = {\frac{d}{dx}} [x^{\frac{1}{2}}] = {\frac{1}{2x}}^{{\frac{1}{2}}-{\frac{2}{2}}} = {\frac{1}{2x}}^{\frac{-1}{2}} = {\frac{1}{2\sqrt(x)}}</math><br>
A1.


<math> \sqrt(x) </math>


 
\sqrt{x} <br><br><br><br><br><br><br><br><br>
\sqrt{x}
 
 
 
<br><br><br><br><br><br><br><br><br>
<math>{\frac{d}{dx}} [c] = 0 </math> <br> <math>{\frac{d}{dx}} [c\cdot f(x)] = c\cdot{\frac{d}{dx}} [f(x)] </math> <br> <math>{\frac{d}{dx}} [f(x)\pm g(x)] = {\frac{d}{dx}} [f(x)] \pm {\frac{d}{dx}} [g(x)] </math> <br> <math>{\frac{d}{dx}} [a^x] = \ln(a)a^x </math><br> <math>{\frac{d}{dx}} [e^x] = e^x </math><br> <math>\color{Blue}Power\,Rule </math><br> <math>{\frac{d}{dx}} [x^n] = n \cdot x^n-1 </math> <br> <math>\color{Red}Product\,Rule </math><br> <math>{\frac{d}{dx}} [f\cdot{g}]= {\frac{d}{dx}}[f]\cdot{g}+{\frac{d}{dx}}[g]\cdot{f}</math><br> <math>\color{Green}Quotient\,Rule </math><br> <math>{\frac{d}{dx}}[\frac{f}{g}]=\frac{{\frac{d}{dx}}[f]\cdot{g}-{\frac{d}{dx}}[g]\cdot{f}}{g^2}</math><br> <math>\mathbf{\color{Purple}{Examples}}</math><br> <math>\mathbf{Ex.1}</math><br> <math>if\,f(x)=x\cdot{e^x}</math><br> <math>f^\prime(x)=1\cdot{e^x}+x\cdot{e^x}</math><br> <math>\mathbf{Ex.2}</math><br> <math>if\,f(t)=\sqrt{t}(a+bt)</math><br> <math>f^\prime(t)=\frac{1}{2\sqrt{t}}(a+bt)+t\sqrt{t}(b)</math><br> <math>\mathbf{Ex.3}</math><br> <math>if\,f(x)=\sqrt{x}\cdot{g(x)}</math><br> <math>g(4)=2</math><br> <math>g^\prime(4)=3</math><br> <math>f^\prime(x)=\frac{1}{2\sqrt{x}}\cdot{g(x)}+\sqrt{x}\cdot{g^\prime(x)}</math><br> <math>\mathbf{Ex.4}</math><br> <math>y=\frac{\color{Blue}{x^2+x-2}}{\color{Red}{x^3+6}}</math><br> <math>{\frac{d}{dx}}=y^\prime=\frac{(2x+1)(x^3-6)-\color{Blue}{(x^2+x-2)}(3x^2)}{\color{Red}{(x^3+6)^2}}</math><br> <math>=\frac{(2x^4+x^4+x^3+12x+6-[3x^4+3x^2-6x^2]}{(x^3+6)^2}</math><br> <math>=\frac{-x^4-2x^3+6x^2+12x+6}{(x^3+6)^2}</math><br> <math>\mathbf{Ex.5}</math><br> <math>y=\frac{e^x}{1+x^2}\,(1,\frac{e}{2})\,</math><br> <math>{\frac{d}{dx}}=\frac{e^x\cdot(1+x^2)-e^x(2x)}{(1+x^2)^2}</math><br> <math>{\frac{d}{dx}}|_{x=1}\frac{e(1+1)-e^\prime(2)}{(1+1)^2}=\frac{2e-2e}{2^2}=\frac{0}{4}=0</math>

Revision as of 17:38, 11 April 2023


1. The derivative of a constant is 0 =
2.

3.

4.

5.

6.



1)

2)

3)

4)
5)
A1.

\sqrt{x}