Jeremy: Difference between revisions
No edit summary |
No edit summary |
||
| Line 5: | Line 5: | ||
<Math>\frac{d}{dx}(\frac{f(x)}{g(x)})=\frac{f'(x)\cdot g(x) - g'(x)f(x)}{(g(x))^2} | <Math>\frac{d}{dx}(\frac{f(x)}{g(x)})=\frac{f'(x)\cdot g(x) - g'(x)f(x)}{(g(x))^2} | ||
Ex: </Math><br> | <br>Ex: </Math><br> | ||
Latest revision as of 17:26, 28 March 2023
Hallo mein heiße ist Jeremy
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(x)=\sqrt[3]{\frac{4x^3+9y^3_4}{x}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g(x)=\sqrt[-5]{3x^9-7}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (f+g)(x)=\sqrt[3]{\frac{4x^3+9y^3_4}{x}}+\sqrt[-5]{3x^9-7}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(\frac{f(x)}{g(x)})=\frac{f'(x)\cdot g(x) - g'(x)f(x)}{(g(x))^2} <br>Ex: }