7.1 Integration By Parts/30: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary Tag: Manual revert |
||
Line 25: | Line 25: | ||
<math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr ~~~ = ~~~ \left [ \frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} \right ]\ | <math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr ~~~ = ~~~ \left [ \frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} \right ]\Bigg|_{0}^{1} </math> | ||
<math> \left [\frac{\left ( 1 ^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 1 ^{2}+4 \right )^{\frac{1}{2}} \right ]- \left [ \frac{\left ( 0^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 0^{2}+4 \right )^{\frac{1}{2}} \right ] </math> | <math> \left [\frac{\left ( 1 ^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 1 ^{2}+4 \right )^{\frac{1}{2}} \right ]- \left [ \frac{\left ( 0^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 0^{2}+4 \right )^{\frac{1}{2}} \right ] </math> | ||
<math> \frac{5^{\frac{3}{2}}}{3}-4\left ( 5 \right )^{\frac{1}{2}}-\left ( \frac{\left ( 4 \right )^{\frac{3}{2}}}{3} - 8\right ) ~~~ = ~~~ \frac{5^{\frac{3}{2}}}{3}-4\sqrt{5}-\frac{4^{\frac{3}{2}}}{3}-8 ~~~\approx~~~0.116 </math> | <math> \frac{5^{\frac{3}{2}}}{3}-4\left ( 5 \right )^{\frac{1}{2}}-\left ( \frac{\left ( 4 \right )^{\frac{3}{2}}}{3} - 8\right ) ~~~ = ~~~ \frac{5^{\frac{3}{2}}}{3}-4\sqrt{5}-\frac{4^{\frac{3}{2}}}{3}-8 ~~~\approx~~~0.116 </math> |
Revision as of 16:46, 13 December 2022
Now, we need to substitute u back