7.1 Integration By Parts/24: Difference between revisions
Jump to navigation
Jump to search
(Blanked the page) Tag: Blanking |
No edit summary |
||
Line 1: | Line 1: | ||
<math> | |||
\begin{align} | |||
&\int_{0}^{\pi}\underbrace{x^3\cos(x)}_{ | |||
\begin{aligned} | |||
u&=x^3 \quad \quad dv=\cos(x) \\ | |||
dv&=3x^2 \quad \quad v=\sin(x) | |||
\end{aligned}} | |||
\,dx =x^3\sin(x)-\int_{0}^{\pi} \underbrace{3x^2\sin(x)}_{ | |||
\begin{aligned} | |||
u&=3x^2 \quad \quad dv=\sin(x) \\ | |||
du&=6x \quad \quad v=-\cos(x) | |||
\end{aligned}} | |||
\,dx= x^3\sin(x)-[3x^2-\cos(x)-\int_{0}^{\pi}-6x\cos(x)\,dx]\\ | |||
=&x^3\sin(x)-3x^2\cos(x)-\int_{0}^{\pi}6x\cos(x) | |||
\end{align} | |||
</math> |
Revision as of 19:11, 1 December 2022