From Mr. V Wiki Math
|
|
Line 1: |
Line 1: |
| Prove | | Prove |
| <math> | | <math> |
| \int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx | | \int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx \\[2ex] |
|
| |
|
| </math> \\[2ex] | | </math> |
|
| |
|
| Note: | | Note: |
Revision as of 04:35, 30 November 2022
Prove
Failed to parse (syntax error): {\displaystyle \int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx \\[2ex] }
Note:
Solving for
Bring down: