From Mr. V Wiki Math
|
|
Line 3: |
Line 3: |
| \int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx | | \int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx |
|
| |
|
| | </math> |
| | |
| | Note: |
| | <math> |
| | \begin{align} |
| | \tan^{2}(x) = \sec^{2}(x)-1 |
| | \end{align} |
| </math> | | </math> |
|
| |
|
Line 66: |
Line 73: |
| = \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx | | = \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx |
|
| |
|
| \end{align}
| |
| </math>
| |
|
| |
| Note:
| |
| <math>
| |
| \begin{align}
| |
| \tan^{2}(x) = \sec^{2}(x)-1
| |
| \end{align} | | \end{align} |
| </math> | | </math> |
Revision as of 04:34, 30 November 2022
Prove
Note:
Solving for
Bring down: