7.1 Integration By Parts/49: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 51: Line 51:
</math>
</math>


Bring down  
Bring down:


</math>
</math>
Line 57: Line 57:


-\int_{}^{}\tan^{n-2}(x)dx
-\int_{}^{}\tan^{n-2}(x)dx
\end{align}
</math>
</math>
\begin{align}
= \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx
= \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx



Revision as of 04:31, 30 November 2022

Prove

Solving for

</math> \begin{align}

\frac{\tan^{n-1}(x)}{n-1} = \frac{(n-1)}{n-1} \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx

\end{align} </math>

Bring down:

</math> \begin{align}

-\int_{}^{}\tan^{n-2}(x)dx

\end{align} </math>

</math> \begin{align}

= \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx

\end{align} </math>

Note: