From Mr. V Wiki Math
|
|
Line 51: |
Line 51: |
| </math> | | </math> |
|
| |
|
| Bring down | | Bring down: |
|
| |
|
| </math> | | </math> |
Line 57: |
Line 57: |
|
| |
|
| -\int_{}^{}\tan^{n-2}(x)dx | | -\int_{}^{}\tan^{n-2}(x)dx |
| | |
| | \end{align} |
| | </math> |
| | |
| | </math> |
| | \begin{align} |
| | |
| = \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx | | = \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx |
|
| |
|
Revision as of 04:31, 30 November 2022
Prove
Solving for
</math>
\begin{align}
\frac{\tan^{n-1}(x)}{n-1} = \frac{(n-1)}{n-1} \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx
\end{align}
</math>
Bring down:
</math>
\begin{align}
-\int_{}^{}\tan^{n-2}(x)dx
\end{align}
</math>
</math>
\begin{align}
= \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx
\end{align}
</math>
Note: