7.1 Integration By Parts/49: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 31: | Line 31: | ||
= \tan^{n-1}(x) - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx \\[2ex] | = \tan^{n-1}(x) - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx \\[2ex] | ||
\tan^{n-1}(x) - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx \\[2ex] | \tan^{n-1}(x) - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx \\[2ex] | ||
<math> | |||
\begin{align} | |||
&+(n-2)\int_{}^{} \sec^{2}(x)dx \quad &&&+(n-2)\int_{}^{} \sec^{2}(x)dx | |||
\end{align} | |||
</math> | |||
\end{align} | \end{align} |
Revision as of 04:18, 30 November 2022
Prove
Solving for
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx = \tan^{n-2}(x) \cdot \tan(x) - \int_{}^{} (n-2)\tan^{n-3}(x)\sec^{2} \cdot \tan(x)dx \\[2ex] = \tan^{n-1}(x) - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx \\[2ex] \tan^{n-1}(x) - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx \\[2ex] <math> \begin{align} &+(n-2)\int_{}^{} \sec^{2}(x)dx \quad &&&+(n-2)\int_{}^{} \sec^{2}(x)dx \end{align} }
\end{align} </math>
Note: