7.1 Integration By Parts/49: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 31: Line 31:
= \tan^{n-1}(x)  - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx  \\[2ex]
= \tan^{n-1}(x)  - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx  \\[2ex]
\tan^{n-1}(x)  - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx \\[2ex]
\tan^{n-1}(x)  - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx \\[2ex]
= \\[2ex]
 
<math>
\begin{align}
 
&+(n-2)\int_{}^{} \sec^{2}(x)dx                                                  \quad &&&+(n-2)\int_{}^{} \sec^{2}(x)dx
 
\end{align}
</math>


\end{align}
\end{align}

Revision as of 04:18, 30 November 2022

Prove

Solving for

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx = \tan^{n-2}(x) \cdot \tan(x) - \int_{}^{} (n-2)\tan^{n-3}(x)\sec^{2} \cdot \tan(x)dx \\[2ex] = \tan^{n-1}(x) - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx \\[2ex] \tan^{n-1}(x) - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx \\[2ex] <math> \begin{align} &+(n-2)\int_{}^{} \sec^{2}(x)dx \quad &&&+(n-2)\int_{}^{} \sec^{2}(x)dx \end{align} }

\end{align} </math>

Note: