7.1 Integration By Parts/49: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 29: Line 29:


\int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx = \tan^{n-2}(x) \cdot \tan(x) - \int_{}^{} (n-2)\tan^{n-3}(x)\sec^{2} \cdot \tan(x)dx \\[2ex]
\int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx = \tan^{n-2}(x) \cdot \tan(x) - \int_{}^{} (n-2)\tan^{n-3}(x)\sec^{2} \cdot \tan(x)dx \\[2ex]
&= \tan^{n-1}(x)  - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx  \\[2ex]
= \tan^{n-1}(x)  - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx  \\[2ex]
\tan^{n-1}(x)  - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx \\[2ex]
\tan^{n-1}(x)  - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx \\[2ex]
&= \\[2ex]
= \\[2ex]


\end{align}
\end{align}

Revision as of 04:17, 30 November 2022

Prove

Solving for

Note: