7.1 Integration By Parts/49: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 28: | Line 28: | ||
\begin{align} | \begin{align} | ||
\int_{}^{} | \int_{}^{} (\sec^{2}x)(\tan^{n-2}x) &= \tan(x) \cdot \tan^{n-2}(x) - \int_{}^{} (n-2)\tan^{n-3}(x)\sec^{2} \cdot \tan(x) \\[2ex] | ||
&= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex] | &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex] | ||
&= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex] | &= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex] |
Revision as of 04:11, 30 November 2022
Prove
Solving for
Note: