From Mr. V Wiki Math
|
|
Line 47: |
Line 47: |
| \begin{align} | | \begin{align} |
|
| |
|
| = \frac{\sec^{n-2}(x)\tan(x)} | | = \sec^{2}(x)\tan(x) + (n-2) \int_{}^{} \sec^{n-2}(x)dx = \frac{\sec^{n-2}(x) \tan(x)}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}(x)dx |
| | |
| \end{align} | | \end{align} |
| </math> | | </math> |
Revision as of 03:54, 30 November 2022
Prove