7.1 Integration By Parts/50: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
Tag: Manual revert
No edit summary
Line 47: Line 47:
\begin{align}
\begin{align}


= \frac{\sec^{n-2}(x)\tan(x)}
= \sec^{2}(x)\tan(x) + (n-2) \int_{}^{} \sec^{n-2}(x)dx = \frac{\sec^{n-2}(x) \tan(x)}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}(x)dx
 
\end{align}
\end{align}
</math>
</math>

Revision as of 03:54, 30 November 2022

Prove