From Mr. V Wiki Math
|
|
Line 32: |
Line 32: |
|
| |
|
| \int_{}^{} \sec^{n}(x)dx = \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n}(x)dx + (n-2) \int_{}^{}\sec^{n-2}(x)dx | | \int_{}^{} \sec^{n}(x)dx = \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n}(x)dx + (n-2) \int_{}^{}\sec^{n-2}(x)dx |
| | +(n-2)\int_{}^{} \sec^{2}(x)dx \quad +(n-2)\int_{}^{} \sec^{2}(x)dx |
|
| |
|
| \end{align} | | \end{align} |
| </math> | | </math> |
Revision as of 00:27, 30 November 2022
Prove