7.1 Integration By Parts/7: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
\begin{align} | \begin{align} | ||
&=\int x^2 sin (\pi x)\\[2ex] | &=\int x^2 sin (\pi x)\\[2ex] | ||
U=x^2 ,\\[ | U=x^2 ,\\[x] du= 2xdx ,\\[x] dv= sin(\pi x)dx ,\\[x] v=-\frac{1}{\pi}cos(\pi x) \\[2ex] | ||
&=-\frac{x^2}{\pi}cos(\pi x) +\frac{2}{\pi} \int x cos (\pi x) dx\\[2ex] | &=-\frac{x^2}{\pi}cos(\pi x) +\frac{2}{\pi} \int x cos (\pi x) dx\\[2ex] | ||
U=x,\\[ | U=x,\\[x] du= dx,\\[x] dv= cos(\pi x) dx,\\[x] v=\frac{1}{\pi}sin (\pi x) \\[2ex] | ||
&=-\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi}\int sin (\pi x) dx]\\[2ex] | &=-\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi}\int sin (\pi x) dx]\\[2ex] | ||
&= -\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi^2}cos(\pi x) ] +c\\[2ex] | &= -\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi^2}cos(\pi x) ] +c\\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 00:18, 30 November 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. TeX parse error: Bracket argument to \\ must be a dimension"): {\displaystyle {\begin{aligned}&=\int x^{2}sin(\pi x)\\[2ex]U=x^{2},\\[x]du=2xdx,\\[x]dv=sin(\pi x)dx,\\[x]v=-{\frac {1}{\pi }}cos(\pi x)\\[2ex]&=-{\frac {x^{2}}{\pi }}cos(\pi x)+{\frac {2}{\pi }}\int xcos(\pi x)dx\\[2ex]U=x,\\[x]du=dx,\\[x]dv=cos(\pi x)dx,\\[x]v={\frac {1}{\pi }}sin(\pi x)\\[2ex]&=-{\frac {x^{2}}{\pi }}cos(\pi x)+{\frac {2}{\pi }}[{\frac {x}{\pi }}sin(\pi x)-{\frac {1}{\pi }}\int sin(\pi x)dx]\\[2ex]&=-{\frac {x^{2}}{\pi }}cos(\pi x)+{\frac {2}{\pi }}[{\frac {x}{\pi }}sin(\pi x)-{\frac {1}{\pi ^{2}}}cos(\pi x)]+c\\[2ex]\end{aligned}}}