7.1 Integration By Parts/45: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 43: | Line 43: | ||
Line 91: | Line 61: | ||
</math> | </math> | ||
<math> | |||
\begin{align} | \begin{align} | ||
Line 98: | Line 68: | ||
&= \frac{4}{5}\int_{0}^{\frac{\pi}{2}} (1-cos^2(x)) sin(x) dx \\[2ex] | &= \frac{4}{5}\int_{0}^{\frac{\pi}{2}} (1-cos^2(x)) sin(x) dx \\[2ex] | ||
&= -\int_{1}^{0} (1-u^2)\cdot du \\[2ex] | &= -\int_{1}^{0} (1-u^2)\cdot du \\[2ex] | ||
&= \frac{4}{5} \left[- | &= \frac{4}{5} \left[u - \frac{u^3}{3}\right]\bigg|_{0}^{1} \\[2ex] | ||
Line 105: | Line 75: | ||
& dx= \frac{du}{-sin(x)} \\[2ex] | & dx= \frac{du}{-sin(x)} \\[2ex] | ||
& \int sin^3(x) dx \\[2ex] | & \int sin^3(x) dx \\[2ex] | ||
&= \frac{4}{5} [1-\frac{1}{3}] \\[2ex] | |||
&= \frac{4}{5} [- | &= \frac{8}{15} | ||
&= \frac{ | |||
\end{align} | \end{align} | ||
</math> |
Latest revision as of 00:30, 30 November 2022