7.1 Integration By Parts/50: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 31: Line 31:
\begin{align}
\begin{align}


\int_{}^{} \sec^{n}(x)dx = \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n}(x)dx + (n-2) \int_{}^{}\sec^{n-2}(x)dx
\int_{}^{} \sec^{n}(x)dx = \sec^{n-2}(x) \cdot \tan(x)  
 
</math>
</math>
\end{align}
\end{align}

Revision as of 00:22, 30 November 2022

Prove

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{}^{} \sec^{n}(x)dx = \sec^{n-2}(x) \cdot \tan(x) } \end{align}