7.1 Integration By Parts/50: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 22: | Line 22: | ||
&= sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n-2}(x) \cdot \tan^{2}(x)\right]dx \\[2ex] | &= sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n-2}(x) \cdot \tan^{2}(x)\right]dx \\[2ex] | ||
&= sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} | &= sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n-2}(x) \cdot [\sec^{2}(x)-1]dx \\[2ex] | ||
&= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex] | &= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex] | ||
Revision as of 18:56, 29 November 2022
Prove
sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n-2}(x) \cdot [\sec^{2}(x)-1]dx