7.1 Integration By Parts/50: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 22: | Line 22: | ||
&= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex] | &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex] | ||
&= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex] | &= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex] | ||
</math> |
Revision as of 18:26, 29 November 2022
Prove
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{}^{} \left(\ln(x)^{n}\right)dx &= x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex] &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex] &= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex] }