7.1 Integration By Parts/50: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "Prove <math> \int_{}^{} \sec^{n}x = \frac{\tanx \cdot \sec^{n-2}x}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}xdx </math> <math> \int_{}^{} \left(\ln(x)^{n}\right)dx </math> <math> \begin{align} &u = \ln(x)^{n} \quad dv= 1dx \\[2ex] &du =1dx \quad v=x \\[2ex] \end{align} </math> <math> \begin{align} \int_{}^{} \left(\ln(x)^{n}\right)dx &= x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex] &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(...")
 
No edit summary
Line 1: Line 1:
Prove
Prove
<math>
<math>
\int_{}^{} \sec^{n}x = \frac{\tanx \cdot \sec^{n-2}x}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}xdx
\int_{}^{} \sec^{n}x = \frac{\tanx \sec^{n-2}x}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}xdx


</math>
</math>

Revision as of 18:24, 29 November 2022

Prove Failed to parse (unknown function "\tanx"): {\displaystyle \int_{}^{} \sec^{n}x = \frac{\tanx \sec^{n-2}x}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}xdx }

<math> \begin{align}

\int_{}^{} \left(\ln(x)^{n}\right)dx &= x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex] &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex] &= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex]