7.1 Integration By Parts/51b: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:


\int\ln(x)^3dx &= x\ln(x)^3 -\underbrace{3\int\ln(x)^2dx}_{  
\int\ln(x)^3dx &= x\ln(x)^3 -\underbrace{3\int\ln(x)^2dx}_{  
\begin{aligned}
\begin{aligned}
u & = \ln^{2}{(x)}  & dv &= dx \\[0.6ex]
u & = \ln^{2}{(x)}  & dv &= dx \\[0.6ex]
du & = \tfrac{2\ln{(x)}}{x}dx  & v &= x
du & = \tfrac{2\ln{(x)}}{x}dx  & v &= x
\end{aligned}
\end{aligned}} \\ [2ex]
} \\ [2ex]


&= x\ln^{3}(x) -3\left[\ln^{2}{(x)}\cdot x - 2\int\ln{(x)}dx\right] \\ [1ex]
&= x\ln^{3}(x) -3\left[\ln^{2}{(x)}\cdot x - 2\int\ln{(x)}dx\right] \\ [1ex]
&= x\ln^{3}(x) -3x\ln^{2}{(x)} + \underbrace{6\int\ln{(x)}dx}_{
&= x\ln^{3}(x) -3x\ln^{2}{(x)} + \underbrace{6\int\ln{(x)}dx}_{
\begin{aligned}
\begin{aligned}

Revision as of 18:15, 29 November 2022