7.1 Integration By Parts/49: Difference between revisions
Jump to navigation
Jump to search
No edit summary Tag: Manual revert |
No edit summary |
||
Line 7: | Line 7: | ||
<math> | <math> | ||
\int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}x dx | \int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}x dx | ||
&= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)-\tan^{n-2}x dx | |||
</math> | </math> | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
&u = \ | &u = \tan^{n-2}x \quad dv= 1dx \\[2ex] | ||
&du =1dx \quad v=x \\[2ex] | &du =1dx \quad v=x \\[2ex] | ||
Revision as of 18:06, 29 November 2022
Prove
Failed to parse (syntax error): {\displaystyle \int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}x dx &= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)-\tan^{n-2}x dx }