7.1 Integration By Parts/49: Difference between revisions
Jump to navigation
Jump to search
(Created page with "Prove <math> \int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{tan^{n-1}x}{n-1} - \int_{}^{} \tan^{n-2}xdx </math> <math> \int_{}^{} \left(\ln(x)^{n}\right)dx </math> <math> \begin{align} &u = \ln(x)^{n} \quad dv= 1dx \\[2ex] &du =1dx \quad v=x \\[2ex] \end{align} </math> <math> \begin{align} \int_{}^{} \left(\ln(x)^{n}\right)dx &= x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex] &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \rig...") |
No edit summary |
||
Line 1: | Line 1: | ||
Prove | Prove | ||
<math> | <math> | ||
\int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{tan^{n-1}x}{n-1} - \int_{}^{} \tan^{n-2} | \int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx | ||
</math> | </math> |
Revision as of 17:57, 29 November 2022
Prove