7.1 Integration By Parts/30: Difference between revisions
No edit summary |
No edit summary |
||
| Line 17: | Line 17: | ||
<math> \frac{1}{2} \left [ \left (\frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right ) - \left ( \frac{u^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} \right ) \right ] ~~~ = ~~~ \frac{1}{2} \left [ \left (\frac{u^{\frac{3}{2}}}{\frac{3}{2}} \right ) - 4\left ( \frac{u^{\frac{1}{2} }}{\frac{1}{2}} \right )\right ] ~~~ = ~~~ \frac{u^{\frac{3}{2}}}{3} - 4u^{\frac{1}{2}} </math> | <math> \frac{1}{2} \left [ \left (\frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right ) - \left ( \frac{u^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} \right ) \right ] ~~~ = ~~~ \frac{1}{2} \left [ \left (\frac{u^{\frac{3}{2}}}{\frac{3}{2}} \right ) - 4\left ( \frac{u^{\frac{1}{2} }}{\frac{1}{2}} \right )\right ] ~~~ = ~~~ \frac{u^{\frac{3}{2}}}{3} - 4u^{\frac{1}{2}} </math> | ||
<math> \left [\frac{\left ( 1 ^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 1 ^{2}+4 \right )^{\frac{1}{2}} \right ]- \left [ \frac{\left ( 0^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 0^{2}+4 \right )^{\frac{1}{2}} \right ] </math> | |||
Revision as of 12:48, 29 November 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= 4+r^{2} \\[2ex] r^{2} &= u-4 \\[2ex] 2r\cdot dr &= du \\[2ex] \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \left [ \left (\frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right ) - \left ( \frac{u^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} \right ) \right ] ~~~ = ~~~ \frac{1}{2} \left [ \left (\frac{u^{\frac{3}{2}}}{\frac{3}{2}} \right ) - 4\left ( \frac{u^{\frac{1}{2} }}{\frac{1}{2}} \right )\right ] ~~~ = ~~~ \frac{u^{\frac{3}{2}}}{3} - 4u^{\frac{1}{2}} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \left [\frac{\left ( 1 ^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 1 ^{2}+4 \right )^{\frac{1}{2}} \right ]- \left [ \frac{\left ( 0^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 0^{2}+4 \right )^{\frac{1}{2}} \right ] }
Now, we need to substitute u back
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} + C }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr ~~~ = ~~~ \left [ \frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} \right ] }