7.1 Integration By Parts/30: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 14: Line 14:
</math>
</math>


<math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr  ~~~ = ~~~  \int_{0}^{1}\frac{r}{2\sqrt{u}}\cdot dr  ~~~ = ~~~  \int_{0}^{1}\frac{u-4}{2\sqrt{u}}\cdot dr ~~~ = ~~~  \frac{}{}\frac{1}{2} \int_{0}^{1} \left (\frac{u}{\sqrt{u}} - \frac{4}{\sqrt{u}} \right ) \cdot dr </math>
<math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr  ~~~ = ~~~  \int_{0}^{1}\frac{r}{2\sqrt{u}}\cdot dr  ~~~ = ~~~  \int_{0}^{1}\frac{u-4}{2\sqrt{u}}\cdot du ~~~ = ~~~  \frac{}{}\frac{1}{2} \int_{0}^{1} \left (\frac{u}{\sqrt{u}} - \frac{4}{\sqrt{u}} \right ) \cdot du </math>

Revision as of 12:04, 29 November 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= 4+r^{2} \\[2ex] r^{2} &= u-4 \\[2ex] 2r\cdot dr &= du \\[2ex] \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr ~~~ = ~~~ \int_{0}^{1}\frac{r}{2\sqrt{u}}\cdot dr ~~~ = ~~~ \int_{0}^{1}\frac{u-4}{2\sqrt{u}}\cdot du ~~~ = ~~~ \frac{}{}\frac{1}{2} \int_{0}^{1} \left (\frac{u}{\sqrt{u}} - \frac{4}{\sqrt{u}} \right ) \cdot du }