7.1 Integration By Parts/45: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "<math> \begin{align} & \int_{0}^{\frac{\pi}{2}} sin^n(x) dx = \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} sin^{n-2} (x) dx \\[2ex] &= -\frac{1}{n} cos(x) sin^{n-1} (x) + \frac{n-1}{n} \bigg|_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} sin^{n-2}(x) dx \\[2ex] &= -\frac{1}{n} cos(\frac{\pi}{2}) sin^{n-1} (\frac{\pi}{2})+ \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} sin^{n-2}(x) dx \\[2ex] &= -\frac{1}{n} (0) (1) + \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} sin^{n-2}(x) dx \\[2ex] &...")
 
No edit summary
Line 63: Line 63:
&= \frac{4}{5} [(-1)(0) + \frac{1}{3} (0)^3 - ((-1)(1) +\frac{1}{3} cos^3(1) \\[2ex]
&= \frac{4}{5} [(-1)(0) + \frac{1}{3} (0)^3 - ((-1)(1) +\frac{1}{3} cos^3(1) \\[2ex]


&= \frac{4}{5} [-(-1+ \frac{1}{3}(1)]
&= \frac{4}{5} [-(-1+ \frac{1}{3}(1)] \\[2ex]
&= \frac{4}{5}[\frac{2}{3}]
&= \frac{4}{5}[\frac{2}{3}] \\[2ex]
&= \frac{8}{15}
&= \frac{8}{15} \\[2ex]


\end{align}
</math>
<math>
\begin{align}
& \int_{0}^{\frac{\pi}{2}} sin^{2n+1} (x) dx \\[2ex]
&= \frac{2n+1-1}{2n+1} \int_{0}^{\frac{\pi}{2}} sin^{2n+1-2} (x) dx \\[2ex]
&= \frac{2n}{2n+1} \int_{0}^{\frac{\pi}{2}} sin^{2n-1} (x) dx \\[2ex]





Revision as of 05:52, 29 November 2022