7.1 Integration By Parts/11: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
<math> | <math> | ||
\int \text {arctan(4t)}dt = \text {tarctan(4t)}-4\int \frac{t}{1+16t^{2}} dt = \text {tarctan(4t)}-\frac{4}{32}\int\frac{1}{u} = \text {tarctan(4t)}-\frac{1}{8}in(u)= \text {tarctan(4t)}-\frac{1}{8}in(1+16t^{2})+C | |||
</math> | |||
\begin{align} | \begin{align} | ||
u=1+16t^{2} \\[1ex] | u=1+16t^{2} \\[1ex] | ||
du=32t dt \\[1ex] | du=32t dt \\[1ex] |
Revision as of 05:10, 29 November 2022
\begin{align} u=1+16t^{2} \\[1ex] du=32t dt \\[1ex] \frac{1}{32}du=t dt
\end{align} </math>