7.1 Integration By Parts/11: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 13: Line 13:
<math>
<math>
\begin{align}
\begin{align}
\int \text {arctan(4t)}dt = \text {tarctan(4t)}-4\int \frac{t}{1+16t^{2}} dt = \text {tarctan(4t)}-\frac{4}{32}\int\frac{1}{u}\\ [1ex]
\int \text {arctan(4t)}dt = \text {tarctan(4t)}-4\int \frac{t}{1+16t^{2}} dt = \text {tarctan(4t)}-\frac{4}{32}\int\frac{1}{u} = \text {tarctan(4t)}-\frac{1}{8}in(u)= \text {tarctan(4t)}-\frac{1}{8}in(1+16t^{2})+C \\ [1ex]


u=1+16t^{2} \\[1ex]
u=1+16t^{2} \\[1ex]
du=32t dt \\[1ex]
du=32t dt \\[1ex]
\frac{1}{32}du=t dt  
\frac{1}{32}du=t dt  
\end{align}
</math>
&= \text {tarctan(4t)} \\[1ex]
&= \pi\left[\left(4(2)-(2)^2+\frac{1}{12}(2)^3\right)-\left(4(1)-(1)^2+\frac{1}{12}(1)^3\right)\right] \\[2ex]
&= \pi\left[\left(8-4+\frac{8}{12}\right)-\left(4-1+\frac{1}{12}\right)\right] \\[2ex]
&= \pi\left[4+\frac{8}{12}-3-\frac{1}{12}\right]= \pi\left[1+\frac{7}{12}\right] \\[2ex]
&= \pi\left[\frac{12}{12}+\frac{7}{12}\right]= \pi\left[\frac{19}{12}\right] \\[2ex]
&= \frac{19\pi}{12}


\end{align}
\end{align}
</math>
</math>

Revision as of 05:07, 29 November 2022