7.1 Integration By Parts/12: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 24: Line 24:
\quad = \quad \frac{1}{6}p^6 ln(p)-\frac{1}{36}p^6+C  
\quad = \quad \frac{1}{6}p^6 ln(p)-\frac{1}{36}p^6+C  


<pre style="color: red">
Text is '''preformatted'''
with a style and
''markups'' '''''cannot''''' be done
</pre>


\end{align}
\end{align}
</math>
</math>

Latest revision as of 03:49, 29 November 2022

Evaluate the integral

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int p^5 ln (p)dp \\[2ex] \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u= ln(p) \quad \quad dv=p^5dp \\[2ex] du = \frac{1}{p} \quad \quad \quad v= \frac{1}{6}p^6 \\[2ex] \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int p^5 ln (p)dp \quad = \quad \frac{1}{6}p^6 ln(p) - \int p^6 \frac{1}{p} dp \quad = \quad \frac{1}{6}p^6 ln(p)-\frac{1}{36}p^6+C \end{align} }