7.1 Integration By Parts/54: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 37: Line 37:


<math>
<math>
\begin{align}
\int_{1}^{5} \left(x\ln(x) \right)dx \\
\int_{1}^{5} \left(x\ln(x) \right)dx \\


\begin{align}
u &= \ln(x) \quad dv= x dx \\
u &= \ln(x) \quad dv= x dx \\
du &= \frac{1}{x} \quad v=\frac{x^2}{2} \\
du &= \frac{1}{x} \quad v=\frac{x^2}{2} \\

Revision as of 03:10, 29 November 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y=5\ln(x) , y=x\ln(x) }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} 5\ln(x) &=x\ln(x)\\[1ex] &x=5 \\[1ex] &x=1 \\[1ex] 5\ln(2) > 2\ln(2) \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{1}^{5}\left(5\ln(x) -x\ln(x) \right)dx = \int_{1}^{5} \left(5\ln(x) \right)dx - \int_{1}^{5} \left(x\ln(x) \right)dx }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \ln(x) \quad dv= 1 dx \\ du &= \frac{1}{x} dx \quad v=x \\ \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{1}^{5} \left(x\ln(x) \right)dx \\ u &= \ln(x) \quad dv= x dx \\ du &= \frac{1}{x} \quad v=\frac{x^2}{2} \\ \end{align} }