7.1 Integration By Parts/54: Difference between revisions
No edit summary |
No edit summary |
||
| Line 37: | Line 37: | ||
<math> | <math> | ||
\begin{align} | |||
\int_{1}^{5} \left(x\ln(x) \right)dx \\ | \int_{1}^{5} \left(x\ln(x) \right)dx \\ | ||
u &= \ln(x) \quad dv= x dx \\ | u &= \ln(x) \quad dv= x dx \\ | ||
du &= \frac{1}{x} \quad v=\frac{x^2}{2} \\ | du &= \frac{1}{x} \quad v=\frac{x^2}{2} \\ | ||
Revision as of 03:10, 29 November 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y=5\ln(x) , y=x\ln(x) }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} 5\ln(x) &=x\ln(x)\\[1ex] &x=5 \\[1ex] &x=1 \\[1ex] 5\ln(2) > 2\ln(2) \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{1}^{5}\left(5\ln(x) -x\ln(x) \right)dx = \int_{1}^{5} \left(5\ln(x) \right)dx - \int_{1}^{5} \left(x\ln(x) \right)dx }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \ln(x) \quad dv= 1 dx \\ du &= \frac{1}{x} dx \quad v=x \\ \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{1}^{5} \left(x\ln(x) \right)dx \\ u &= \ln(x) \quad dv= x dx \\ du &= \frac{1}{x} \quad v=\frac{x^2}{2} \\ \end{align} }