7.1 Integration By Parts/43: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:


\int\sin^2(x)dx &= - \frac{1}{2}\cos(x) \cdot \sin^{2-1}x + \frac{2-1}{2} \int\sin^{0}(x)dx \\[2ex]
\int\sin^2(x)dx &= - \frac{1}{2}\cos(x) \cdot \sin^{2-1}x + \frac{2-1}{2} \int\sin^{0}(x)dx \\[2ex]
\end{align}
</math>
\int\sin^2(x)dx &= - \frac{1}{2}\cos(x) \cdot \sin^{2-1}x + \frac{2-1}{2} \int\sin^{0}(x)dx \\[2ex]
&= -\frac{1}{2}\cos(x)\sin(x) + \frac{1}{2}x + c \\[2ex]
&= -\frac{1}{2}\cos(x)\sin(x) + \frac{1}{2}x + c \\[2ex]
&= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex]
&= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex]
&= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex]
&= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex]
\end{align}
</math>

Revision as of 00:23, 29 November 2022