7.1 Integration By Parts/43: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
\int\sin^2(x)dx &= - \frac{1}{2}\cos(x) \cdot \sin^{2-1}x + \frac{2-1}{2} \int\sin^{0}(x)dx \\[2ex] | \int\sin^2(x)dx &= - \frac{1}{2}\cos(x) \cdot \sin^{2-1}x + \frac{2-1}{2} \int\sin^{0}(x)dx \\[2ex] | ||
&= -\frac{1}{2}\cos(x)\sin(x) + \frac{1}{2}x + c \\[2ex] | &= -\frac{1}{2}\cos(x)\sin(x) + \frac{1}{2}x + c \\[2ex] | ||
&= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex] | &= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex] | ||
&= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex] | &= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex] | ||
\end{align} | |||
</math> |
Revision as of 00:23, 29 November 2022